Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Exp Ther Med ; 23(6): 418, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1862973

ABSTRACT

The recent coronavirus outbreak from Wuhan China in late 2019 caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in a global pandemic of coronavirus-19 disease (COVID-19). Understating the underlying mechanism of the pathogenesis of coronavirus infection is important not only because it will help in accurate diagnosis and treatment of the infection but also in the production of effective vaccines. The infection begins when SARS-CoV-2 enters the cells through binding of its envelope glycoprotein to angiotensin-converting enzyme2 (ACE2). Gene variations of ACE2 and microRNA (miR)-196 are associated with viral infection and other diseases. The present study investigated the association of the ACE2 rs4343 G>A and miR-196a2 rs11614913 C>T gene polymorphisms with severity and mortality of COVID-19 using amplification refractory mutation system PCR in 117 COVID-19 patients and 103 healthy controls from three regions of Saudi Arabia. The results showed that ACE2 rs4343 GA genotype was associated with severity of COVID-19 (OR=2.10, P-value 0.0028) and ACE2 rs4343 GA was associated with increased mortality with OR=3.44, P-value 0.0028. A strong correlation between the ACE2 rs4343 G>A genotype distribution among COVID-19 patients was reported with respect to their comorbid conditions including sex (P<0.023), coronary artery disease (P<0.0001), oxygen saturation <60 mm Hg (P<0.0009) and antiviral therapy (0.003). The results also showed that the CT genotype and T allele of the miR-196a2 rs11614913 C>T were associated with decreased risk to COVID-19 with OR=0.76, P=0.006 and OR=0.54, P=0.005, respectively. These results need to be validated with future molecular genetic studies in a larger sample size and different populations.

2.
J Pers Med ; 11(11)2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1488656

ABSTRACT

BACKGROUND: The ongoing outbreak of SARS-CoV-2 represents a significant challenge to international health. Several reports have highlighted the importance of ACE2 on the pathogenesis of COVID-19. The spike protein of SARS-CoV-2 efficiently binds to the angiotensin-converting enzyme 2 (ACE2) receptors and facilitates virus entry into the host cell. In the present study, we hypothesize that a functional insertion/deletion polymorphism-rs4646994 I/D and rs4240157 T > C in the ACE gene could be associated with SARS-CoV-2 infection and mortality. METHODOLOGY: This study included 117 consecutive COVID-19 patients and 150 age matched healthy controls (ACE2-rs4646994 I/D) and 100 age matched healthy controls with ACE2 rs4240157 T > C. We used Mutation specific PCR (MSP) for ACE2-rs4646994 I/D genotyping and amplification refractory mutation system (ARMS-PCR) for ACE2 rs4240157 T > C genotyping. RESULTS: Results indicated that there were significant differences in the genotype distributions of ACE2-rs4646994 I/D polymorphisms (p < 0.030) and ACE2 rs4240157 T > C between COVID-19 patients and controls (p-values < 0.05). Higher frequency of DD genotype (48.71%) and D allele (0.67) was reported in COVID-19 patients than controls. Our results showed that the ACE2-DD genotype was strongly associated with increased COVID-19 severity (OR 2.37 (95%) CI = (1.19-4.70), RR = 1.39 (1.09-1.77), p < 0.013) and also a strong association was seen with ACE2-ID genotype with COVID-19 severity (OR 2.20 (95%) CI = (1.08-4.46), p < 0.020) in the codominant model. In allelic comparison, the D allele was strongly associated with COVID-19 severity (OR 1.58 (95% CI) (1.11-2.27), RR 1.21 (1.05-1.41) p < 0.010). A significant correlation of ACE2-I/D genotypes was reported with Age (p < 0.035), T2D (p < 0.0013), hypertension (p < 0.0031) and coronary artery disease (p < 0.0001). Our results indicated ACE2-DD genotype was strongly associated with increased COVID-19 mortality (OR 8.25 (95%) CI = (2.40 to 28.34), p < 0.008) and also ACE2-DD + DI genotype was strongly associated with increased COVID-19 mortality with OR 4.74 (95%) CI = (1.5214 to 14.7915), p < 0.007. A significant correlation was reported between COVID-19 patients and age matched controls (p < 0.0007). Higher frequency of heterozygosity TC (40%) followed by ACE2-CC genotype (24.78%) was reported among COVID-19 patients. Using multivariate analysis, ACE2-CT genotype was strong associated with SARS-CoV-2 severity with an OR 2.18 (95% CI) (1.92-3.99), p < 0.010 and also ACE2-CC genotype was linked with COVID-19 severity with an OR 2.66 (95% CI) (1.53-4.62), p < 0.005. A significant correlation of ACE2-T > C genotypes was reported with gender (p < 0.04), T2D (p < 0.035). ACE2-CC genotype was strongly associated with increased COVID-19 mortality OR 3.66 (95%) CI = (1.34 to 9.97), p < 0.011 and also ACE2-C allele was associated with COVID-19 mortality OR 2, 01 (1.1761-3.45), p < 0.010. CONCLUSIONS: It is concluded that ACE-DD genotype and D allele was strongly associated with increased COVID-19 patient severity. In addition, ACE I/D polymorphism were strongly associated with advanced age, diabetes and ischemic heart disease in COVID-19 patients whereas ACE-II genotype was a protective factor against the development of severe COVID-19. ACE2-DD genotype was strongly associated with increased COVID-19 mortality. Additionally, ACE2-CC and CT genotypes were strongly associated with COVID-19 severity. Therefore, our study might be useful for identifying the susceptible population groups for targeted interventions and for making relevant public health policy decisions.

SELECTION OF CITATIONS
SEARCH DETAIL